The Knightmate Challenge 2010

Discussion of anything and everything relating to chess playing software and machines.

Moderators: hgm, Harvey Williamson, bob

Forum rules
This textbox is used to restore diagrams posted with the [d] tag before the upgrade.
Richard Allbert
Posts: 762
Joined: Wed Jul 19, 2006 7:58 am

Re: The Knightmate Challenge 2010

It seems ok, file available here

http://jabbachess.blogspot.com/

Thanks!!
Richard

Jim Ablett
Posts: 1327
Joined: Fri Jul 14, 2006 5:56 am
Location: London, England
Contact:

Re: The Knightmate Challenge 2010

Richard Allbert wrote:It seems ok, file available here

http://jabbachess.blogspot.com/

Thanks!!
Richard
Great to see a nice new Knightmate engine.
Thanks Richard.

Jim.

Richard Allbert
Posts: 762
Joined: Wed Jul 19, 2006 7:58 am

Re: The Knightmate Challenge 2010

No problem,

It only took a few minutes.

hgm
Posts: 22327
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: The Knightmate Challenge 2010

The original tourney has finished. Gerbil did finally end above the 20% more handicapped Faile. Vanilla Chess did do much better than its handicap assignment had foreseen. It really seems that the strength of Vanilla Chess deteriorates much faster at faster TC than that of the other engines, and at these long TC a time-odds factor of 2 for it would perhaps have been fairer.

Tomorrow I will start gauntlets for Jabba, to add it to the tourney. First I should figure out a reasonable time-odds for it. I suppose it will be stronger than Lime. Perhaps I should assign if a time-odds factor of 8.

Code: Select all

``````Cross table, sorted by score percentage, Buchholz, SB

Jok Lim Ger Fai Van Dab Fai CCC MSK Fim
1. Joker KM / 16             ### 101 011 ==1 111 111 110 111 111 111
### 01= 111 011 111 111 011 111 111 111   86%  46.5 &#40;1341.0, 1082.8&#41;

2. Lime KM 62 / 7            010 ### 101 111 1=0 011 =11 110 110 111
10= ### 100 111 111 111 111 111 111 111   79%  42.5 &#40;1365.0, 984.5&#41;

3. Gerbil-KM 0.2 / 4         100 010 ### =00 =11 100 111 11= 111 111
000 011 ### =11 111 111 1=0 101 =11 111   69%  37.0 &#40;1398.0, 802.0&#41;

4. Faile KM 1.4.4 / 5        ==0 000 =11 ### 1=1 111 011 ==1 111 =11
100 000 =00 ### 1=1 =11 011 =1= 011 111   63%  34.0 &#40;1416.0, 723.0&#41;

5. Vanilla Knightmate 2.6g   000 0=1 =00 0=0 ### 101 001 011 010 111
000 000 000 0=0 ### 101 111 101 111 111   46%  25.0 &#40;1470.0, 464.3&#41;

6. Dabbabba 2.62 wb / 4      000 100 011 000 010 ### 1=1 001 101 111
000 000 000 =00 010 ### 011 110 111 111   44%  24.0 &#40;1476.0, 437.8&#41;

7. Fairy-Max 4.8v / 4        001 =00 000 100 110 0=0 ### =11 101 111
100 000 0=1 100 000 100 ### 011 110 1=1   44%  23.5 &#40;1479.0, 490.5&#41;

8. CCCP new / 4              000 001 00= ==0 100 110 =00 ### 11= 111
000 000 010 =0= 010 001 100 ### =1= 111   40%  21.5 &#40;1491.0, 401.3&#41;

9. MSKCP 1.4.4               000 001 000 000 101 010 010 00= ### 000
000 000 =00 100 000 000 001 =0= ### 111   22%  12.0 &#40;1548.0, 260.3&#41;

10. Fimbulwinter KM 5.00      000 000 000 =00 000 000 000 000 111 ###
000 000 000 000 000 000 0=0 000 000 ###    7%   4.0 &#40;1596.0,  64.8&#41;
``````

Richard Allbert
Posts: 762
Joined: Wed Jul 19, 2006 7:58 am

Re: The Knightmate Challenge 2010

I think it will be weaker!!

I have just uploaded a new version

http://jabbachess.fileave.com/Jabba 1.0 KM.zip

Correcting an eval bug for KM.

Thanks

Richard

hgm
Posts: 22327
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: The Knightmate Challenge 2010

One question:

Does Jabba understand time controls like 4:30. I have not tested this yet, but Lime did not, which is why I ask. Because of the time odds, it will have to play some games with non-integer minutes...

Richard Allbert
Posts: 762
Joined: Wed Jul 19, 2006 7:58 am

Re: The Knightmate Challenge 2010

It has the code below... so should do.

Code: Select all

``````
//convert the level time control string to integers
void cEngine&#58;&#58;xboardlevel&#40;string str, int pos&#41;
&#123;
int val1=0,val2=0,val3=0,val4=0;
str.erase&#40;0, pos&#41;;

//deal with time in "0&#58;10" format
if&#40;str.find&#40;'&#58;')!=-1&#41;
&#123;
string space = " ";
str.replace&#40;str.find&#40;'&#58;'),1,space&#41;;
istringstream iss&#40;str&#41;;
iss >> val1 >> val2 >> val3 >> val4;
val2 = val2*60*1000 + val3*1000;
val3 = val4*1000;
&#125;
else
&#123;
istringstream iss&#40;str&#41;;
iss >> val1 >> val2 >> val3;
val2 = val2 * 60 * 1000;
val3 = val3 * 1000;
&#125;

//moves per session
tree.timer.setmovestogo&#40;val1,cW&#41;;
tree.timer.setmovestogo&#40;val1,cB&#41;;
tree.timer.setmodemps&#40;val1&#41;;
options.moves = val1;

//black and white time for session
tree.timer.setsessiontime&#40;val2,cW&#41;;
tree.timer.setsessiontime&#40;val2,cB&#41;;

//increment
tree.timer.setinc&#40;val3,cW&#41;;
tree.timer.setinc&#40;val3,cB&#41;;

//reset depth limiter
tree.timer.setdepth&#40;maxply&#41;;
tree.timer.setdepthlimit&#40;false&#41;;
&#125;
``````
Let me know if you have problems.

Richard

hgm
Posts: 22327
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: The Knightmate Challenge 2010

After adding Jabba, the post-final results are:

Code: Select all

``````Cross table, sorted by score percentage, Buchholz, SB

Jok Lim Ger Fai Jab Van Fai CCC Dab MSK Fim
1. Joker KM / 16             ### 101 011 ==1 011 111 110 111 111 111 111
### 01= 111 011 =01 111 011 111 111 111 111   83%  50.0 &#40;1680.0, 1307.8&#41;

2. Lime KM 62 / 7            010 ### 101 111 111 1=0 =11 110 011 110 111
10= ### 100 111 111 111 111 111 111 111 111   81%  48.5 &#40;1689.0, 1271.3&#41;

3. Gerbil-KM 0.2 / 4         100 010 ### =00 =11 =11 111 11= 100 111 111
000 011 ### =11 111 111 1=0 101 111 =11 111   71%  42.5 &#40;1725.0, 1056.8&#41;

4. Faile KM 1.4.4 / 5        ==0 000 =11 ### =1= 1=1 011 ==1 111 111 =11
100 000 =00 ### =10 1=1 011 =1= =11 011 111   62%  37.5 &#40;1755.0, 899.0&#41;

5. Jabba 1.0KM / 4           100 000 =00 =0= ### 101 101 =10 111 011 111
=10 000 000 =01 ### ==1 110 010 111 111 111   55%  33.0 &#40;1782.0, 745.5&#41;

6. Vanilla Knightmate 2.6g   000 0=1 =00 0=0 010 ### 001 011 101 010 111
000 000 000 0=0 ==0 ### 111 101 101 111 111   45%  27.0 &#40;1818.0, 571.5&#41;

7. Fairy-Max 4.8v / 4        001 =00 000 100 010 110 ### =11 0=0 101 111
100 000 0=1 100 001 000 ### 011 100 110 1=1   42%  25.5 &#40;1827.0, 605.5&#41;

8. CCCP new / 4              000 001 00= ==0 =01 100 =00 ### 110 11= 111
000 000 010 =0= 101 010 100 ### 001 =1= 111   42%  25.0 &#40;1830.0, 549.5&#41;

9. Dabbabba 2.62 wb / 4      000 100 011 000 000 010 1=1 001 ### 101 111
000 000 000 =00 000 010 011 110 ### 111 111   40%  24.0 &#40;1836.0, 485.0&#41;

10. MSKCP 1.4.4               000 001 000 000 100 101 010 00= 010 ### 000
000 000 =00 100 000 000 001 =0= 000 ### 111   22%  13.0 &#40;1902.0, 318.8&#41;

11. Fimbulwinter KM 5.00      000 000 000 =00 000 000 000 000 000 111 ###
000 000 000 000 000 000 0=0 000 000 000 ###    7%   4.0 &#40;1956.0,  70.5&#41;
``````
It turns out that the handicp of a time-odds factor 4 I assigned to Jabba was justified; it performed better than all other similarly handicapped engines except Gerbil (which was clearly deserved a higher handicap at these rapid time controls), while the more heavily handicapped Faile still ended above it.

Jabba was more friendly to Lime than to Joker, so the margin with which Joker won the event shrunk to only 1.5 point! (Note, however, that Joker had to face more than twice heavier time-odds than all others, and that despite of this, it did get the better of each of its individual opponents.)

hgm
Posts: 22327
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: The Knightmate Challenge 2010

Using BayesElo, with offset 2000, the performance ratings for this tourney where:

Code: Select all

``````Rank Name                      Elo    +    - games score oppo. draws
1 Joker KM / 16            2303  101   87    60   83%  1970    7%
2 Lime KM 62 / 7           2278   98   86    60   81%  1972    5%
3 Gerbil-KM 0.2 / 4        2168   84   79    60   71%  1983   12%
4 Faile KM 1.4.4 / 5       2097   75   73    60   63%  1990   25%
5 Jabba 1.0KM / 4          2051   77   76    60   55%  1995   13%
6 Vanilla Knightmate 2.6g  1975   77   79    60   45%  2002   10%
7 Fairy-Max 4.8v / 4       1941   80   82    60   43%  2006    8%
8 CCCP new / 4             1936   76   78    60   42%  2006   17%
9 Dabbabba 2.62 wb / 4     1919   80   83    60   40%  2008    3%
10 MSKCP 1.4.4              1758   86   97    60   22%  2024    7%
11 Fimbulwinter KM 5.00     1574  105  140    60    7%  2043    3%
``````
Corrected for the time odds, and ~70 Elo per time doubling (i.e. 100*log(T), where natural logarithms of base e are used ), this predicts for the unhandicapped engines:

Code: Select all

``````Rank Name                      Elo    +    - games score oppo. draws
1 Joker KM / 16            2442  101   87    60   83%  1970    7%
2 Lime KM 62 / 7           2334   98   86    60   81%  1972    5%
3 Gerbil-KM 0.2 / 4        2168   84   79    60   71%  1983   12%
4 Faile KM 1.4.4 / 5       2119   75   73    60   63%  1990   25%
5 Jabba 1.0KM / 4          2051   77   76    60   55%  1995   13%
6 Fairy-Max 4.8v / 4       1941   80   82    60   43%  2006    8%
7 CCCP new / 4             1936   76   78    60   42%  2006   17%
8 Dabbabba 2.62 wb / 4     1919   80   83    60   40%  2008    3%
9 Vanilla Knightmate 2.6g  1836   77   79    60   45%  2002   10%
10 MSKCP 1.4.4              1619   86   97    60   22%  2024    7%
11 Fimbulwinter KM 5.00     1435  105  140    60    7%  2043    3%
``````

hgm
Posts: 22327
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: The Knightmate Challenge 2010

Jabba still seems to have some problems:

Code: Select all

``````&#91;Event "Computer Chess Game"&#93;
&#91;Site "SCHAAK_PC"&#93;
&#91;Date "2010.01.20"&#93;
&#91;Round "1.9"&#93;
&#91;White "Jabba 1.0KM / 4"&#93;
&#91;Black "Faile KM 1.4.4 / 5"&#93;
&#91;Result "1/2-1/2"&#93;
&#91;TimeControl "40/1440"&#93;
&#91;Variant "knightmate"&#93;
&#91;Number "18"&#93;
&#91;Annotator "1. +0.00   1... +0.02"&#93;

1. f4 &#123;+0.00/10&#125; d6 &#123;+0.02/11&#125; 2. Mf2 &#123;+0.05/11&#125; e5 &#123;+0.04/11&#125; 3. fxe5
&#123;+0.13/11&#125; dxe5 &#123;+0.00/11&#125; 4. c4 &#123;+0.05/10&#125; Bd6 &#123;+0.16/9&#125; 5. e3 &#123;+0.03/10&#125;
Qf6 &#123;+0.13/11&#125; 6. Mf3 &#123;+0.03/10&#125; e4 &#123;+0.88/11&#125; 7. Mf4 &#123;+0.03/10&#125; Bxf4
&#123;+0.90/11&#125; 8. exf4 &#123;+0.05/12&#125; Qxf4 &#123;+0.87/11&#125; 9. g3 &#123;+0.13/10&#125; Qf2+
&#123;+1.18/10&#125; 10. Kc2 &#123;+0.10/10&#125; Mf8 &#123;+1.10/10&#125; 11. Qe1 &#123;+0.12/9&#125; Qxe1
&#123;+1.30/12&#125; 12. Kxe1 &#123;+0.02/12&#125; Me7 &#123;+1.36/12&#125; 13. Bg2 &#123;+0.02/12&#125; Bf5
&#123;+1.44/12&#125; 14. Mc2 &#123;+0.00/12&#125; Kg8 &#123;+1.56/11&#125; 15. b3 &#123;+0.00/11&#125; Re8
&#123;+1.63/11&#125; 16. Rf1 &#123;+0.01/11&#125; Mf6 &#123;+1.62/11&#125; 17. Rf2 &#123;+0.04/10&#125; a5
&#123;+1.62/10&#125; 18. Mc3 &#123;+0.01/10&#125; a4 &#123;+1.65/10&#125; 19. b4 &#123;+0.01/10&#125; Me5
&#123;+1.61/10&#125; 20. Md4 &#123;+0.03/11&#125; Mxd4 &#123;+1.51/11&#125; 21. Rxf5 &#123;+0.52/12&#125; Re7
&#123;+1.52/11&#125; 22. c5 &#123;+0.69/10&#125; a3 &#123;+1.45/10&#125; 23. Rg5 &#123;+0.67/10&#125; f6 &#123;+1.55/11&#125;
24. Rf5 &#123;+0.64/10&#125; c6 &#123;+1.52/11&#125; 25. Bf1 &#123;+0.61/10&#125; Mc7 &#123;+1.49/10&#125; 26. Rb1
&#123;+0.61/10&#125; b6 &#123;+1.35/11&#125; 27. Rb3 &#123;+0.72/11&#125; bxc5 &#123;+1.58/11&#125; 28. bxc5
&#123;+0.63/11&#125; g6 &#123;+1.53/11&#125; 29. Rf2 &#123;+0.70/10&#125; Mxc5 &#123;+1.47/10&#125; 30. Bxa3
&#123;+0.83/9&#125; Re5 &#123;+1.47/10&#125; 31. Bb2 &#123;+0.77/9&#125; Re6 &#123;+1.35/12&#125; 32. a3 &#123;+0.72/10&#125;
Rd8 &#123;+1.42/11&#125; 33. a4 &#123;+0.76/9&#125; f5 &#123;+1.54/10&#125; 34. a5 &#123;+0.78/9&#125; Ra8
&#123;+1.47/10&#125; 35. Bc3 &#123;+0.87/9&#125; Md5 &#123;+1.48/11&#125; 36. Ra3 &#123;+0.78/9&#125; Mcd6
&#123;+1.49/10&#125; 37. Bb2 &#123;+0.85/9&#125; M6c5 &#123;+1.80/11&#125; 38. a6 &#123;+0.37/10&#125; Mb6
&#123;+1.74/11&#125; 39. g4 &#123;+0.53/9&#125; fxg4 &#123;+1.91/11&#125; 40. Rf7 &#123;+0.35/11 0.1&#125; Re7
&#123;+1.98/11 0.1&#125; 41. Rxe7 &#123;+0.13/11&#125; Kxe7 &#123;+2.14/11&#125; 42. Be2 &#123;+0.08/10&#125; h5
&#123;+2.03/11&#125; 43. Bf6+ &#123;+0.12/8&#125; Kf5 &#123;+2.03/10&#125; 44. Ra4 &#123;+0.17/9&#125; g3
&#123;+2.24/11&#125; 45. h4 &#123;+0.17/10&#125; Mb5 &#123;+2.19/10&#125; 46. Ra3 &#123;+0.23/11&#125; Me6
&#123;+1.93/10&#125; 47. Bg5 &#123;+0.25/11&#125; Me5 &#123;+1.87/11&#125; 48. Bf1 &#123;+0.02/10&#125; Kg7
&#123;+1.79/11&#125; 49. a7 &#123;+0.00/11&#125; Mb4 &#123;+1.92/11&#125; 50. Ra6 &#123;+0.00/11&#125; Mc5
&#123;+1.88/11&#125; 51. Be3 &#123;+0.00/11&#125; Mcd6 &#123;+1.26/11&#125; 52. Bh3 &#123;+0.04/11&#125; Ke8
&#123;+1.01/12&#125; 53. Kg2 &#123;+0.05/11&#125; Mc7 &#123;+1.09/11&#125; 54. Ra5 &#123;+0.90/11&#125; Md5
&#123;+0.95/11&#125; 55. Kf4 &#123;+1.16/12&#125; Mcd6 &#123;+0.68/10&#125; 56. Ke2 &#123;+1.21/10&#125; Kf6
&#123;+0.49/11&#125; 57. Kxg3 &#123;+1.57/10&#125; Ke8 &#123;+0.34/10&#125; 58. Ke2 &#123;+1.55/10&#125; c5
&#123;+0.34/10&#125; 59. Bf4 &#123;+1.58/10&#125; M6c6 &#123;+0.30/11&#125; 60. Ra6 &#123;+1.76/11&#125; c4
&#123;+0.52/12&#125; 61. Bb8 &#123;+2.61/12&#125; c3 &#123;+0.88/11&#125; 62. dxc3 &#123;+3.44/13&#125; Kf6
&#123;-1.78/11&#125; 63. Ra1 &#123;+3.81/11&#125; Mdd6 &#123;-2.97/11&#125; 64. Rg1 &#123;+4.38/11&#125; Kd5
&#123;-3.67/11&#125; 65. Rxg6 &#123;+4.50/13&#125; Mdc7 &#123;-4.19/11&#125; 66. Bg2 &#123;+4.51/12&#125; Mxb8
&#123;-4.14/11&#125; 67. axb8=Q &#123;+4.59/14&#125; Rxb8 &#123;-4.21/11&#125; 68. Bxe4+ &#123;+4.66/13&#125; Ke3
&#123;-4.21/9&#125; 69. Bxc6 &#123;+4.66/13&#125; Rb2+ &#123;-4.22/10&#125; 70. Kf4 &#123;+4.66/11&#125; Kd1
&#123;-4.22/10&#125; 71. Kxh5 &#123;+4.78/12&#125; Rh2 &#123;-4.23/10&#125; 72. Rg4 &#123;+4.78/11&#125; Kxc3
&#123;-4.19/10&#125; 73. Bg2 &#123;+4.78/10&#125; Kd1 &#123;-4.22/11&#125; 74. Kf4 &#123;+4.80/13&#125; Ke3
&#123;-4.23/10&#125; 75. Rg3+ &#123;+4.80/11&#125; Kf5 &#123;-4.28/10&#125; 76. Rf3 &#123;+5.00/12&#125; Kd6
&#123;-4.38/10&#125; 77. Rh3 &#123;+4.92/11&#125; Rxh3 &#123;-12.28/17&#125; 78. Bxh3 &#123;+5.59/28&#125; Kf7
&#123;-12.35/18&#125; 79. Bg2 &#123;+12.04/27&#125; Kd6 &#123;-12.43/17&#125; 80. Kd5 &#123;+12.04/16 0.1&#125; Kf5
&#123;-9999.71/18 0.1&#125; 81. h5 &#123;+12.04/15&#125; Kh6 &#123;-9999.77/17&#125; 82. Bf3 &#123;+12.04/22&#125;
Kf7 &#123;-9999.75/17&#125; 83. Bh1 &#123;+12.04/15&#125; Kh6 &#123;-9999.79/18&#125; 84. Bg2 &#123;+12.04/18&#125;
Kg4 &#123;-9999.77/16&#125; 85. Be4 &#123;+12.04/14&#125; Kh6 &#123;-9999.79/18&#125; 86. Bh1 &#123;+12.04/14&#125;
Kf5 &#123;-9999.77/18&#125; 87. Bf3 &#123;+12.04/12&#125; Kh6 &#123;-9999.79/18&#125; 88. Be4 &#123;+12.04/19&#125;
Kf7 &#123;-9999.79/18&#125; 89. Bc2 &#123;+12.04/14&#125; Kh6 &#123;-9999.79/17&#125; 90. Bd3 &#123;+12.04/26&#125;
Kf7 &#123;-9999.79/18&#125; 91. Bc4 &#123;+12.04/15&#125; Kh6 &#123;-9999.79/17&#125; 92. Bb3 &#123;+12.04/19&#125;
Kf5 &#123;-9999.77/17&#125; 93. Ba2 &#123;+12.04/21&#125; Kh6 &#123;-9999.79/17&#125; 94. Bc4 &#123;+12.04/19&#125;
Kf7 &#123;-9999.77/17&#125; 95. Bb3 &#123;+12.04/15&#125; Ke5 &#123;-9999.79/16&#125; 96. h6 &#123;+15.19/13&#125;
Kg6 &#123;-9999.81/14&#125; 97. h7 &#123;+15.19/12&#125; Kh8 &#123;-9999.83/14&#125; 98. Bc4 &#123;+15.19/17&#125;
Kf7 &#123;-9999.85/12&#125; 99. Bd3 &#123;+15.19/13&#125; Kh8 &#123;-9999.87/12&#125; 100. Be4
&#123;+15.19/15&#125; Kf7 &#123;-9999.85/14&#125; 101. Bf3 &#123;+15.30/14&#125; Kh8 &#123;-9999.85/14&#125; 102.
Bg2 &#123;+15.25/15&#125; Kg6 &#123;-9999.85/14&#125; 103. Bh1 &#123;+15.25/14&#125; Kh8 &#123;-9999.87/14&#125;
104. Bf3 &#123;+15.25/16&#125; Kf7 &#123;-9999.85/13&#125; 105. Bg2 &#123;+15.25/14&#125; Kh8
&#123;-9999.87/13&#125; 106. Bh1 &#123;+15.25/17&#125; Kg6 &#123;-9999.85/14&#125; 107. Be4+ &#123;+15.25/15&#125;
Kh8 &#123;-9999.85/13&#125; 108. Bc2 &#123;+15.25/21&#125; Kf7 &#123;-9999.85/14&#125; 109. Bg6+
&#123;+15.25/13&#125; Kh8 &#123;-9999.83/14&#125; 110. Bf5 &#123;+15.25/15&#125; Kf7 &#123;-9999.85/13&#125; 111.
Bc2 &#123;+15.25/14&#125; Kh8 &#123;-9999.87/14&#125; 112. Bd3 &#123;+15.25/21&#125; Kf7 &#123;-9999.85/14&#125;
113. Bb1 &#123;+15.25/14&#125; Kh8 &#123;-9999.87/13&#125; 114. Ba2 &#123;+15.25/18&#125; Kg6
&#123;-9999.85/13&#125; 115. Ke3 &#123;+15.25/14&#125; Kh8 &#123;-9999.83/14&#125; 116. Bd5 &#123;+15.25/18&#125;
Kg6 &#123;-9999.85/14&#125; 117. Be4+ &#123;+15.25/15&#125; Kh8 &#123;-9999.83/13&#125; 118. Bc6
&#123;+15.25/20&#125; Kf7 &#123;-9999.85/13&#125; 119. Kd5 &#123;+15.25/15&#125; Kh8 &#123;-9999.87/13&#125; 120.
Bb7 &#123;+15.25/21 0.1&#125; Kg6 &#123;-9999.85/14 0.1&#125; 121. Ba8 &#123;+15.30/14&#125; Kh8
&#123;-9999.87/14&#125; 122. Bc6 &#123;+127.93/15&#125; Kf7 &#123;-9999.85/14&#125; 123. Bb7 &#123;+127.93/14&#125;
Kh8 &#123;-9999.87/14&#125; 124. Ba8 &#123;+15.25/15&#125; Kf7 &#123;-9999.85/14&#125; 125. Ke3
&#123;+15.25/14&#125; Kh8 &#123;-9999.83/15&#125; 126. Be4 &#123;+15.25/21&#125; Kf7 &#123;-9999.83/14&#125; 127.
Bf3 &#123;+15.25/14&#125; Kh8 &#123;-9999.83/14&#125; 128. Bb7 &#123;+15.25/17&#125; Kg6 &#123;-9999.85/14&#125;
129. Bg2 &#123;+15.25/18&#125; Kh8 &#123;-9999.83/15&#125; 130. Ba8 &#123;+15.25/18&#125; Kf7
&#123;-9999.85/14&#125; 131. Bh1 &#123;+15.25/17&#125; Kh8 &#123;-9999.83/15&#125; 132. Bf3 &#123;+15.25/16&#125;
Kg6 &#123;-9999.85/14&#125; 133. Kf5 &#123;+15.25/21&#125; Kh8 &#123;-9999.87/12&#125; 134. Kd4
&#123;+15.25/22&#125; Kf7 &#123;-9999.85/13&#125; 135. Ba8 &#123;+15.25/13&#125; Kh8 &#123;-9999.83/14&#125; 136.
Bb7 &#123;+15.25/15&#125; Kg6 &#123;-9999.85/13&#125; 137. Bd5 &#123;+15.25/13&#125; Kh8 &#123;-9999.83/14&#125;
138. Bc6 &#123;+15.25/18&#125; Kf7 &#123;-9999.85/13&#125; 139. Be4 &#123;+15.25/12&#125; Kh8
&#123;-9999.83/15&#125; 140. Bd5 &#123;+15.25/20&#125; Kg6 &#123;-9999.85/14&#125; 141. Bf3 &#123;+15.25/18&#125;
Kh8 &#123;-9999.83/15&#125; 142. Be4 &#123;+15.25/16&#125; Kf7 &#123;-9999.83/15&#125; 143. Bg2
&#123;+15.25/22&#125; Kh8 &#123;-9999.83/15&#125; 144. Ba8 &#123;+15.25/23&#125; Kg6 &#123;-9999.85/15&#125; 145.
Bh1 &#123;+15.25/14&#125; Kh8 &#123;-9999.83/15&#125; 146. Bg2 &#123;+15.25/16&#125; Kf7 &#123;-9999.81/14&#125;
147. Bb7 &#123;+15.25/14&#125;