Smooth scaling stockfish

Discussion of anything and everything relating to chess playing software and machines.

Moderator: Ras

Edward German

Re: Smooth scaling stockfish

Post by Edward German »

DomLeste wrote:1st update from DC for 32bit Stockfish 1.6s

32bit version Scales null move smoothly 328 KB (336,384 bytes)

2nd update

32bit version slightly smoother scaling 326 KB (333,824 bytes)

I have both if anyone wants a link but the differences small i guess.
Thanks for this Info!

My Version (see Link to it in my first post) have 336.384 Bytes. But my Performance on playchess is very well, see my games in my othe post in this thread.

My Best!
Eduard
Edward German

Re: My playing version of stockfish 1.6s

Post by Edward German »

Tt was probably the fist compiled Version DC.

See here my answer:

http://www.talkchess.com/forum/viewtopi ... 04&t=31331

My Best,
Eduard
Edward German

Re: Little test with both stockfish 1.6s versions!

Post by Edward German »

Edward German wrote:It was probably the fist compiled Version DC.

See here my answer:

http://www.talkchess.com/forum/viewtopi ... 04&t=31331

My Best,
Eduard
Before few minutes, I played now few live-games on Playchess with BOTH compiled Versions of 1.6s DC on my Core 2 Duo 2.66 GHz only.

1st update from DC for 32bit Stockfish 1.6s 32bit version Scales null move smoothly 328 KB (336,384 bytes) is here in my test named as Stockfish 1.6s.

2nd update 32bit version slightly smoother scaling 326 KB (333,824 bytes) is here in my test named as Stockfish 1.6s2.

I startet with the newest Version. I lost 3 games in a row:
(my Nick is Wolkenlos)

[Event "Wertungspartie, 3m + 0s"]
[Site "Maschinenraum"]
[Date "2009.12.30"]
[Round "?"]
[White "Obrasileiro, Rybka 3 Dynamic 32-Bit"]
[Black "Wolkenlos, Stockfish 1.6s2 32-Bit"]
[Result "1-0"]
[ECO "C43"]
[WhiteElo "2686"]
[BlackElo "2485"]
[Annotator "1.04;0.00"]
[PlyCount "143"]
[EventDate "2009.12.30"]
[TimeControl "180"]

{Rybka 3 Dynamic 32-bit: 18.2 ply; 324kN/s Intel(R) Core(TM) i7 CPU
920 @ 2.67GHz 3501MHz, (4 threads), en-chess.ctg, 128 MB} 1. e4 {B/0 0} e5 {
B/0 0} 2. Nf3 {B/0 0} Nf6 {B/0 0} 3. d4 {B/0 0} Nxe4 {B/0 0} 4. Bd3 {B/0 0} d5
{B/0 0} 5. Nxe5 {B/0 0} Nd7 {B/0 0} 6. Nxd7 {B/0 0} Bxd7 {B/0 0} 7. O-O {B/0 0}
Qh4 {B/0 0} 8. c4 {B/0 0} O-O-O {B/0 0} 9. c5 {B/0 0} g5 {B/0 0} 10. Nc3 {B/0 0
} Bg7 {B/0 0} 11. g3 {B/0 0} Qh3 {B/0 0} 12. Nxe4 {B/0 0} dxe4 {B/0 0} 13. Bxe4
{B/0 0} Bb5 {B/0 0} 14. Bg2 {B/0 0} Qf5 {B/0 0} 15. Be3 {B/0 0} Bxf1 {B/0 0}
16. Bxf1 {B/0 0} Rhe8 {B/0 0} 17. Qa4 {B/0 0} Kb8 {B/0 0} 18. Rd1 {B/0 0} c6 {
B/0 0} 19. Bg2 {B/0 0} Re7 {B/0 0} 20. d5 {B/0 0} cxd5 {B/0 0} 21. c6 {B/0 0}
d4 {B/0 0} 22. h4 {B/0 0} h6 {B/0 0} 23. Bxd4 {B/0 0} Bxd4 {B/0 0} 24. Rxd4 {
B/0 0} Rg8 {B/0 0} 25. Qb4 {B/0 0} Rc7 {B/0 0} 26. h5 {B/0 0} g4 {B/0 0} 27.
Rd5 {1.04/12 4} Qf6 {B/0 0} 28. Rb5 {1.14/15 3} b6 {B/0 0} 29. Qe4 {1.20/15 7}
Qd6 {(Rg8-d8) 0.00/16 5} 30. Re5 {1.19/15 2} Rgc8 {(Qd6-d1+) 0.16/19 13} 31.
Re8 {1.40/13 2} Qf6 {(a7-a6) 0.36/18 3} 32. Rxc8+ {1.41/14 2} Rxc8 {0.76/19 11}
33. Qxg4 {1.49/17 1} Rd8 {(Qf6-d6) 0.80/18 4} 34. Qc4 {1.66/17 3} Rc8 {
(Qf6-e7) 0.84/19 2} 35. b4 {1.65/16 3} Qa1+ {(Rc8-c7) 0.88/20 2} 36. Bf1 {
1.72/16 1} Qf6 {(Qa1-e5) 0.92/17 6} 37. b5 {1.85/16 1} Rc7 {1.01/19 4} 38. Qd3
{1.85/19 2} Rc8 {0.88/19 2} 39. Qd7 {1.80/18 1} Rc7 {0.88/16 1} 40. Qd2 {
1.76/19 5} Rc8 {0.92/19 6} 41. Qc2 {1.76/19 0} Qe7 {0.96/16 5} 42. Bh3 {
1.76/19 0} Rd8 {1.05/18 4} 43. Qf5 {1.75/20 6} Rd1+ {(Qe7-e1+) 0.96/19 0} 44.
Kg2 {1.75/19 2} Rd8 {1.13/20 7} 45. Kh2 {1.75/21 0} Kc7 {1.25/20 8} 46. Qf4+ {
1.75/19 0} Rd6 {1.05/20 6} 47. Qa4 {1.75/20 0} Kb8 {1.01/20 2} 48. Qg4 {
1.75/20 2} Rd8 {(Qe7-e8) 0.80/18 4} 49. Qc4 {1.75/17 1} Rd2 {(Rd8-d6) 1.05/18 5
} 50. Qf4+ {1.75/19 11} Rd6 {1.09/22 0} 51. Qc1 {1.75/19 2} Rf6 {0.60/17 3} 52.
Qb2 {1.75/19 0} Qd6 {(Rf6-d6) 0.84/19 4} 53. a4 {1.91/17 4} Qd8 {
(Kb8-c7) 0.68/17 8} 54. Qe5+ {2.23/16 6} Rd6 {0.76/19 5} 55. Bd7 {2.26/18 0}
Kc7 {1.17/20 7} 56. Kg2 {2.26/19 0} Qf8 {1.33/19 2} 57. a5 {2.30/19 6} bxa5 {
(Qf8-d8) 1.25/17 5} 58. Be8 {2.40/15 1} Kb8 {1.65/16 10} 59. Bxf7 {2.74/17 0}
a4 {1.13/13 2} 60. Be6 {2.74/17 5} Qe7 {1.65/14 2} 61. Qh8+ {2.92/17 5} Qd8 {
2.22/18 0} 62. Qg7 {2.92/18 4} Qc7 {2.38/19 0} 63. Qf8+ {2.94/18 4} Qd8 {
2.50/19 0} 64. Qf7 {2.94/19 4} Qb6 {2.62/19 0} 65. Bd7 {3.01/18 5} Kc7 {
(Qb6-d8) 2.90/17 3} 66. Bg4+ {3.59/15 2} Kb8 {2.82/19 0} 67. Qf4 {3.78/16 2}
Kc7 {3.23/17 0} 68. Qe5 {5.70/14 9} Qb8 {(Qb6-d4) 1.97/14 2} 69. Bf3 {5.80/11 2
} Kb6 {9.01/14 2} 70. Qe3+ {6.00/11 0} Kxb5 {9.25/14 1} 71. Qc3 {5.88/11 1} Qf8
{(Kb5-b6) 12.40/16 2} 72. c7 {Wolkenlos,Stockfish 1.6s2 32-Bit gibt auf 5.11/11 0
} 1-0

[Event "Wertungspartie, 3m + 0s"]
[Site "Maschinenraum"]
[Date "2009.12.30"]
[Round "?"]
[White "Wolkenlos, Stockfish 1.6s2 32-Bit"]
[Black "Harald 2, Rybka 3"]
[Result "0-1"]
[ECO "C01"]
[WhiteElo "2477"]
[BlackElo "2573"]
[Annotator "0.36;0.04"]
[PlyCount "168"]
[EventDate "2009.12.30"]
[TimeControl "180"]

{Rybka 3: 15.5 ply; 287kN/s AMD Phenom(tm) II X4 955 Processor, (4 threads),
en-chess.ctg, 128 MB} 1. e4 {B/0 0} e6 {B/0 0} 2. d4 {B/0 0} d5 {B/0 0} 3. Nc3
{B/0 0} Bb4 {B/0 0} 4. exd5 {B/0 0} exd5 {B/0 0} 5. Bd3 {B/0 0} Nc6 {B/0 0} 6.
a3 {B/0 0} Bxc3+ {B/0 0} 7. bxc3 {B/0 0} Nge7 {B/0 0} 8. Nf3 {0.36/17 11} Bf5 {
B/0 0} 9. O-O {0.36/17 5} O-O {B/0 0} 10. Rb1 {0.24/17 10} b6 {0.04/14 6} 11.
c4 {(Lf4) 0.28/17 0} Qd7 {-0.02/13 3} 12. Re1 {0.40/16 7} Rfe8 {-0.04/14 0} 13.
h3 {0.20/16 15} h6 {-0.02/14 0} 14. Bf4 {(Lb2) 0.16/16 6} dxc4 {-0.45/13 3} 15.
Bxc4 {-0.20/16 6} Nd5 {-0.26/15 0} 16. Bd2 {(Dd2) -0.32/15 3} Rxe1+ {-0.40/13 5
} 17. Qxe1 {(Lxe1) -0.36/15 0} Bxc2 {-0.77/13 2} 18. Rb5 {-0.12/18 8} Nce7 {
-0.85/14 0} 19. Ne5 {-0.64/14 4} Qe6 {-0.82/14 0} 20. Rb2 {-0.56/14 4} Ba4 {
-0.68/14 6} 21. f3 {(Lb4) -0.68/13 4} Rd8 {-0.75/14 5} 22. Rb1 {
(De4) -0.84/14 3} a5 {-1.05/12 2} 23. Ba2 {-0.92/13 7} f6 {-1.19/14 0} 24. Nd3
{-1.13/16 6} Qd6 {-1.14/15 0} 25. Qc1 {-1.33/14 3} Kh7 {-1.22/14 1} 26. Nf4 {
-1.25/15 7} Bc6 {-1.23/14 0} 27. Ne2 {(Lb3) -1.17/14 6} Re8 {-1.24/13 7} 28.
Nf4 {(Lc4) -1.21/14 3} Kh8 {-1.34/12 2} 29. Nh5 {(Kh1) -1.65/14 5} Nf5 {
-1.65/12 1} 30. Qc4 {-1.77/13 1} Nde7 {-1.65/13 2} 31. Bf4 {(Te1) -1.45/14 3}
Qd8 {-1.25/12 3} 32. Bb3 {(Dd3) -1.37/14 5} Qxd4+ {-1.32/12 7} 33. Qxd4 {
-1.17/15 3} Nxd4 {-1.21/15 0} 34. Bxc7 {-1.33/17 1} Nxb3 {-1.35/17 3} 35. Rxb3
{-1.53/19 0} Nd5 {-1.36/18 2} 36. Bd6 {-1.45/20 0} Re6 {-1.36/18 4} 37. Bb8 {
(Lh2) -1.65/19 0} Re3 {-1.44/17 2} 38. Rxe3 {-1.69/20 1} Nxe3 {-1.44/18 0} 39.
Bf4 {-1.45/19 1} Nc4 {-1.41/18 0} 40. Bc1 {-1.53/21 0} b5 {-1.36/19 7} 41. Nf4
{-1.69/19 2} Kg8 {-1.41/19 4} 42. Kf2 {(Se6) -1.57/19 3} Kf7 {-1.25/17 3} 43.
Ke2 {-1.49/19 0} g5 {-1.25/17 2} 44. Nd3 {-1.49/19 0} Ke6 {-1.14/16 9} 45. Ne1
{-1.49/21 0} h5 {-1.17/16 2} 46. Nc2 {-1.21/17 2} Be8 {-1.14/16 1} 47. g3 {
(g4) -1.21/16 0} Bc6 {-1.19/14 1} 48. h4 {-1.45/16 0} gxh4 {-1.14/15 1} 49.
gxh4 {-1.49/19 0} Ne5 {-1.14/16 1} 50. f4 {(Ld2) -1.73/16 2} Nf3 {-1.48/15 1}
51. Kf2 {(Lb2) -1.93/16 0} Nxh4 {-1.48/18 2} 52. Bb2 {-2.34/17 0} Nf3 {
-1.83/18 5} 53. Bc3 {-2.34/16 1} Kf5 {-1.87/18 0} 54. Ne1 {-2.34/18 0} Nh4 {
-1.89/18 2} 55. Bxa5 {-2.50/17 2} Ng6 {-1.91/18 1} 56. Nc2 {-2.62/18 1} Kxf4 {
-2.10/19 7} 57. Nd4 {-2.78/20 0} Bd7 {-2.06/19 2} 58. Bb6 {(Ld8) -2.86/17 0}
Ne5 {-2.16/15 1} 59. Bd8 {(Lc7) -2.86/16 2} h4 {-2.22/15 1} 60. Ne2+ {
-2.94/16 2} Kf5 {-2.25/16 0} 61. Be7 {-2.90/16 1} Nc6 {-2.24/17 1} 62. Bf8 {
-2.98/17 1} Kg4 {-2.25/17 1} 63. Bg7 {-2.98/17 1} f5 {-2.49/16 2} 64. Nc1 {
-3.35/15 2} h3 {-2.63/17 0} 65. Nd3 {-3.71/18 1} f4 {-2.64/18 0} 66. Bh6 {
-3.83/18 0} Bf5 {-2.64/19 4} 67. Nxf4 {-3.95/26 0} Ne5 {-2.65/19 1} 68. Nxh3 {
-3.87/26 0} Kxh3 {-3.05/20 1} 69. Bf8 {-3.83/27 0} Nc4 {-3.05/22 0} 70. Kf3 {
-3.79/25 0} Kh4 {-3.05/22 0} 71. Be7+ {(Kf4) -3.83/25 0} Kh5 {-3.05/21 0} 72.
Bc5 {(Lb4) -3.83/24 0} Kg5 {-3.05/20 0} 73. Be7+ {-3.83/25 1} Kg6 {-3.13/23 0}
74. Bc5 {-3.75/25 0} Kf6 {-3.28/22 0} 75. Kf4 {-3.75/26 0} Ke6 {-3.74/21 2} 76.
Bb4 {-3.91/27 0} Bg6 {-3.74/21 0} 77. Kg5 {-4.12/22 1} Be4 {-3.94/23 0} 78. Kf4
{-4.32/22 1} Kd5 {-4.14/22 0} 79. Be7 {(Lf8) -4.64/22 0} Kd4 {-4.14/22 0} 80.
Bb4 {-6.46/23 2} Bd3 {-4.14/22 0} 81. Kg5 {(Kf3) -5.73/20 1} Ne3 {-5.07/18 2}
82. Bf8 {-8.56/26 0} Kc4 {-5.07/19 0} 83. Kf4 {-10.20/21 1} Nc2 {-5.07/19 0}
84. Bd6 {(Ke5) -10.93/24 0} Kb3 {
Wolkenlos,Stockfish 1.6s2 32-Bit gibt auf (Lag: Av=0.47s, max=1.5s) -5.08/15 2}
0-1

[Event "Wertungspartie, 3m + 0s"]
[Site "Maschinenraum"]
[Date "2009.12.30"]
[Round "?"]
[White "Harald 2, Rybka 3"]
[Black "Wolkenlos, Stockfish 1.6s2 32-Bit"]
[Result "1-0"]
[ECO "C54"]
[WhiteElo "2586"]
[BlackElo "2464"]
[Annotator "0.03;0.00"]
[PlyCount "107"]
[EventDate "2009.12.30"]
[TimeControl "180"]

{Rybka 3: 16.4 ply; 267kN/s AMD Phenom(tm) II X4 955 Processor, (4 threads),
en-chess.ctg, 128 MB} 1. e4 {B/0 0} e5 {B/0 0} 2. Nf3 {B/0 0} Nc6 {B/0 0} 3.
Bc4 {B/0 0} Nf6 {B/0 0} 4. d3 {B/0 0} Bc5 {B/0 0} 5. O-O {B/0 0} d6 {B/0 0} 6.
c3 {B/0 0} O-O {B/0 0} 7. Bb3 {B/0 0} a6 {B/0 0} 8. Re1 {B/0 0} Ba7 {B/0 0} 9.
h3 {B/0 0} Kh8 {B/0 0} 10. Nbd2 {B/0 0} Nh5 {B/0 0} 11. Nf1 {B/0 0} Qf6 {
0.00/15 4} 12. Be3 {B/0 0} Bxe3 {0.00/17 7} 13. Rxe3 {0.03/12 4} Bd7 {
(Sf4) -0.24/16 5} 14. d4 {0.04/14 4} Nf4 {-0.16/17 2} 15. Ng3 {0.00/14 14} Kg8
{(Tad8) -0.08/18 0} 16. dxe5 {0.14/13 3} Nxe5 {-0.04/17 7} 17. Nxe5 {0.18/15 0}
Qxe5 {0.00/14 1} 18. Qd2 {0.14/15 6} Rae8 {0.00/16 0} 19. Rd1 {0.16/14 6} a5 {
(Db5) 0.00/16 6} 20. Rf3 {0.30/13 2} Ng6 {(g5) -0.08/16 5} 21. Bd5 {0.20/12 5}
Nh4 {(b5) 0.00/15 4} 22. Rd3 {0.53/12 2} Bc6 {0.20/15 3} 23. c4 {0.51/13 0} Bd7
{(a4) 0.68/15 5} 24. f4 {0.71/13 2} Qf6 {0.92/15 2} 25. f5 {0.67/13 12} g6 {
(De5) 0.52/14 6} 26. Qh6 {1.78/10 2} c6 {1.37/14 5} 27. Nh5 {1.40/13 0} Qxb2 {
1.69/15 3} 28. Qg5 {1.40/13 3} Qxg2+ {1.93/15 6} 29. Qxg2 {1.80/14 0} Nxg2 {
1.93/13 0} 30. Nf6+ {2.00/13 6} Kg7 {1.57/19 2} 31. Nxd7 {2.00/15 0} Nf4 {
1.53/18 3} 32. f6+ {2.00/15 0} Kh6 {1.53/18 4} 33. Rf3 {1.92/15 0} g5 {
2.50/20 12} 34. Nxf8 {1.91/17 0} cxd5 {2.50/16 3} 35. Nd7 {1.91/17 12} dxc4 {
2.46/18 0} 36. Nb6 {1.97/17 7} Rxe4 {2.74/17 0} 37. Kf1 {1.97/18 12} Kg6 {
2.82/17 0} 38. Rxd6 {1.97/17 1} h6 {(h5) 2.94/17 4} 39. Rc3 {2.26/12 1} h5 {
2.98/16 1} 40. a4 {2.15/13 0} h4 {2.94/15 4} 41. Rd7 {2.34/15 0} Kxf6 {
3.39/15 5} 42. Rxb7 {2.21/16 0} Kg6 {3.35/15 4} 43. Rd7 {2.39/16 4} f6 {
3.43/17 0} 44. Rd6 {2.57/15 4} g4 {(Te5) 3.15/17 3} 45. hxg4 {3.44/12 2} h3 {
5.05/16 6} 46. Rd2 {3.79/15 0} Nd3 {(Te8) 5.09/16 2} 47. Kg1 {4.30/13 2} Ne5 {
5.65/16 0} 48. Kh2 {4.51/13 3} Rxg4 {5.77/17 1} 49. Kxh3 {4.67/14 1} Kf5 {
6.06/16 2} 50. Rd5 {4.90/15 5} Rg1 {6.42/18 0} 51. Nxc4 {5.09/15 3} Ke4 {
7.11/16 2} 52. Rc5 {5.09/14 5} Rg8 {(Ta1) 6.66/15 4} 53. Rc8 {5.20/11 3} Rg7 {
(Tg1) 6.78/15 3} 54. Nxa5 {Wolkenlos,Stockfish 1.6s2 32-Bit gibt auf 5.19/11 2}
1-0

After this 3 lost games I used the OLDER compiled Version with 336,384 bytes!

First game against a strong Rybka I draws and the game 2 Stockfish 1.6s won very nice!!

PGN:

[Event "Wertungspartie, 5m + 0s"]
[Site "Maschinenraum"]
[Date "2009.12.30"]
[Round "?"]
[White "Wolkenlos, Stockfish 1.6s 32-Bit"]
[Black "Studebaker, Rybka 3 Human"]
[Result "1/2-1/2"]
[ECO "D73"]
[WhiteElo "2453"]
[BlackElo "2576"]
[Annotator "-0.28;-0.19"]
[PlyCount "125"]
[EventDate "2009.12.30"]
[TimeControl "300"]

{Rybka 3 Human: 16.9 ply; 172kN/s Intel(R) Core(TM)2 Quad CPU @ 2.
40GHz, (4 threads), en-chess.ctg, 128 MB} 1. d4 {B/0 0} Nf6 {B/0 0} 2. Nf3 {
B/0 0} g6 {B/0 0} 3. c4 {B/0 0} Bg7 {B/0 0} 4. g3 {B/0 0} d5 {B/0 0} 5. Bg2 {
B/0 0} dxc4 {B/0 0} 6. Qa4+ {B/0 0} Nfd7 {B/0 0} 7. Qxc4 {-0.28/16 7} Nb6 {
B/0 0} 8. Qb5+ {-0.16/16 12} Nc6 {-0.19/14 7} 9. e3 {(Ne5) -0.16/17 3} a6 {
-0.20/14 8} 10. Qe2 {-0.12/18 0} O-O {-0.27/15 11} 11. O-O {-0.08/18 0} Bg4 {
-0.19/14 3} 12. h3 {(Rd1) 0.00/19 13} Be6 {-0.22/14 6} 13. b3 {0.00/17 3} Qd7 {
-0.14/14 13} 14. Ng5 {(Kh2) 0.24/16 13} Bd5 {-0.33/13 2} 15. Bb2 {0.00/16 5}
Bxg2 {-0.32/14 9} 16. Kxg2 {-0.12/13 1} e5 {-0.31/14 5} 17. dxe5 {0.00/17 3}
Nxe5 {-0.26/15 4} 18. f4 {(Nd2) -0.04/16 9} Nd3 {-0.24/13 7} 19. Bxg7 {
-0.04/18 9} Kxg7 {-0.15/17 0} 20. Kh2 {(Rd1) 0.00/17 6} f6 {-0.15/14 13} 21.
Rd1 {0.16/18 6} fxg5 {0.07/14 1} 22. Rxd3 {0.28/17 9} Qe7 {0.08/16 0} 23. Nc3 {
0.28/17 9} gxf4 {0.13/16 0} 24. gxf4 {0.40/17 7} Rae8 {0.13/16 10} 25. Rad1 {
0.36/17 0} c6 {0.13/15 12} 26. Qf3 {(Qf2) 0.28/15 5} Rd8 {0.08/13 2} 27. Rxd8 {
(Kg3) 0.32/17 5} Rxd8 {0.00/13 2} 28. e4 {0.36/19 5} Na8 {0.00/14 0} 29. Rxd8 {
0.40/17 5} Qxd8 {0.02/16 0} 30. Ne2 {0.40/19 10} Nc7 {0.06/17 0} 31. Qc3+ {
0.40/18 5} Kf7 {0.02/16 8} 32. Qc4+ {0.40/16 4} Kg7 {0.02/16 1} 33. Kg3 {
0.40/18 5} Qe7 {0.02/14 1} 34. Nc1 {(b4) 0.44/16 5} g5 {0.00/14 6} 35. Ne2 {
(f5) 0.32/16 9} Qd6 {0.00/14 3} 36. Qd4+ {0.32/16 5} Qxd4 {0.01/20 0} 37. Nxd4
{0.32/17 0} gxf4+ {0.01/19 3} 38. Kxf4 {0.36/22 1} Kf6 {0.15/19 7} 39. a4 {
(b4) 0.36/23 0} c5 {0.00/19 2} 40. e5+ {0.08/22 5} Kf7 {0.00/21 0} 41. Ne2 {
0.20/23 4} b5 {0.00/21 1} 42. Ke4 {0.04/23 3} c4 {0.00/20 1} 43. axb5 {
0.00/24 2} axb5 {0.00/21 20} 44. Nd4 {(bxc4) 0.00/31 0} cxb3 {-0.01/20 4} 45.
Nxb3 {0.00/30 4} b4 {-0.05/21 0} 46. Kd4 {(h4) 0.00/27 4} Kg6 {-0.15/18 3} 47.
Ke4 {(Na5) 0.00/24 1} Ne6 {
Wolkenlos,Stockfish 1.6s 32-Bi bietet Remis -0.27/19 2} 48. h4 {0.00/24 5} h5 {
-0.34/20 0} 49. Nc1 {(Kd5) 0.00/27 3} Nc5+ {-0.44/19 1} 50. Kd4 {0.00/28 2} b3
{-0.54/22 1} 51. Kc3 {(Ne2) 0.00/31 2} b2 {-0.08/19 2} 52. Kxb2 {0.00/24 0} Kf5
{-0.07/22 2} 53. Kc3 {(Ne2) 0.00/32 0} Nd7 {-0.07/21 1} 54. e6 {(Ne2) 0.00/37 3
} Kxe6 {0.00/23 1} 55. Nd3 {(Ne2) 0.00/35 0} Kf5 {-0.10/23 1} 56. Kd4 {
0.00/39 3} Nf8 {0.00/27 0} 57. Nc5 {(Ke3) 0.00/40 2} Ng6 {-0.20/24 1} 58. Ne4 {
(Kd5) 0.00/38 3} Nxh4 {0.00/28 2} 59. Kd5 {0.00/1 0} Kf4 {0.00/1 0} 60. Nf6 {
0.00/1 0} Kg5 {0.00/1 0} 61. Ke6 {0.00/1 0} Kf4 {0.00/1 0} 62. Nxh5+ {0.00/1 0}
Ke3 {0.00/1 0} 63. Kd5 {(Lag: Av=0.61s, max=1.9s) 0.00/1 0} 1/2-1/2

[Event "Wertungspartie, 3m + 0s"]
[Site "Maschinenraum"]
[Date "2009.12.30"]
[Round "?"]
[White "Wolkenlos, Stockfish 1.6s 32-Bit"]
[Black "Valter ottaviani, Rybka 3"]
[Result "1-0"]
[ECO "A81"]
[WhiteElo "2459"]
[BlackElo "2620"]
[Annotator "0.28;0.80"]
[PlyCount "71"]
[EventDate "2009.12.30"]
[TimeControl "180"]

{Rybka 3: 17.4 ply; 207kN/s Intel(R) Core(TM)2 Extreme CPU Q6850 @ 3.00GHz
3005MHz, (4 threads), en-chess.ctg, 128 MB} 1. d4 {B/0 0} f5 {B/0 0} 2. g3 {
B/0 0} e6 {B/0 0} 3. Bg2 {B/0 0} Nf6 {B/0 0} 4. Nf3 {B/0 0} c5 {B/0 0} 5. O-O {
0.28/17 10} Nc6 {B/0 0} 6. c4 {0.16/16 9} cxd4 {B/0 0} 7. Nxd4 {0.28/17 4} Bc5
{B/0 0} 8. Nb3 {B/0 0} Be7 {B/0 0} 9. Nc3 {B/0 0} O-O {B/0 0} 10. e4 {B/0 0}
fxe4 {B/0 0} 11. Nxe4 {B/0 0} a5 {B/0 0} 12. Nd4 {0.84/14 6} Nxe4 {B/0 0} 13.
Bxe4 {0.80/15 6} Nxd4 {B/0 0} 14. Qxd4 {1.01/14 1} Ra6 {B/0 0} 15. Qd3 {
1.33/16 5} h6 {B/0 0} 16. Be3 {1.29/15 6} Qc7 {B/0 0} 17. Qe2 {1.33/16 6} Bf6 {
B/0 0} 18. Qg4 {1.53/17 13} Rd8 {0.80/11 6} 19. Qg6 {1.93/15 7} Bxb2 {1.11/13 0
} 20. Bxh6 {(Tab1) 3.03/16 7} Bf6 {1.59/12 5} 21. Rad1 {(Ag5) 3.63/16 8} d5 {
2.06/11 5} 22. cxd5 {3.51/16 0} exd5 {2.51/12 5} 23. Rxd5 {3.67/17 2} Qf7 {
2.76/13 6} 24. Qh7+ {4.76/15 7} Kf8 {2.83/15 0} 25. Rxd8+ {(Dh8+) 5.29/16 5}
Bxd8 {4.09/14 15} 26. Be3 {5.41/19 0} Ke8 {4.14/14 15} 27. Rc1 {5.61/18 0} Bd7
{4.14/14 6} 28. Rd1 {(Axb7) 6.10/17 0} Be7 {4.45/12 2} 29. Qh8+ {6.14/15 2} Bf8
{4.45/14 5} 30. Bxb7 {(Ac5) 6.46/18 0} Rf6 {4.66/12 2} 31. Bg5 {6.46/17 0} a4 {
5.16/12 12} 32. Bd5 {(Axf6) 8.12/19 0} Qe7 {4.82/11 14} 33. Qh5+ {9.85/16 6} g6
{7.56/10 0} 34. Qh8 {13.41/18 3} Qe2 {7.56/10 1} 35. Rd2 {15.15/16 1} Qe1+ {
7.48/10 11} 36. Kg2 {
Valter ottaviani,Rybka 3 abbandona (Lag: Av=0.36s, max=1.3s) 3.39/6 0} 1-0

Fantastic game 2 by the first compiled Version of Stockfish 1.6s!! In my opinion the first version 1.6s DC plays a little bit stronger.

My Best,
Eduard
Dr.Ex
Posts: 196
Joined: Sun Jul 08, 2007 4:10 am

Re: Little test with both stockfish 1.6s versions!

Post by Dr.Ex »

I think that you can not draw any conclusions from these games. You'll have to match the two DC-compiles directly on your machine.
Edward German

Re: Little test with both stockfish 1.6s versions!

Post by Edward German »

Dr.Ex wrote:I think that you can not draw any conclusions from these games. You'll have to match the two DC-compiles directly on your machine.
I think, this is not a good idea, because an engine needs to play better against other engines as against one of their own!
Dann Corbit
Posts: 12777
Joined: Wed Mar 08, 2006 8:57 pm
Location: Redmond, WA USA

Re: Little test with both stockfish 1.6s versions!

Post by Dann Corbit »

Dr.Ex wrote:I think that you can not draw any conclusions from these games. You'll have to match the two DC-compiles directly on your machine.
I think that he is right though. I am seeing the same thing.

The newer version trims a bit more. I guess that it is too much.
ernest
Posts: 2047
Joined: Wed Mar 08, 2006 8:30 pm

Re: Smooth scaling stockfish

Post by ernest »

Jim Ablett wrote:Here's is my re-compiled Stockfish 1.6s x64 JA compile which uses Dann's enhancements.
Hi Jim,
Have you also compiled a 32-bit Stockfish 1.6s w32 JA ?
Thanks!
zullil
Posts: 6442
Joined: Tue Jan 09, 2007 12:31 am
Location: PA USA
Full name: Louis Zulli

Re: Little test with both stockfish 1.6s versions!

Post by zullil »

Dann Corbit wrote:
Dr.Ex wrote:I think that you can not draw any conclusions from these games. You'll have to match the two DC-compiles directly on your machine.
I think that he is right though. I am seeing the same thing.

The newer version trims a bit more. I guess that it is too much.
This is getting very confusing (for me). Could you post the relevant portions of search.cpp for each of the "smooth reduction" versions. Please!
Dann Corbit
Posts: 12777
Joined: Wed Mar 08, 2006 8:57 pm
Location: Redmond, WA USA

Re: Little test with both stockfish 1.6s versions!

Post by Dann Corbit »

zullil wrote:
Dann Corbit wrote:
Dr.Ex wrote:I think that you can not draw any conclusions from these games. You'll have to match the two DC-compiles directly on your machine.
I think that he is right though. I am seeing the same thing.

The newer version trims a bit more. I guess that it is too much.
This is getting very confusing (for me). Could you post the relevant portions of search.cpp for each of the "smooth reduction" versions. Please!
First version (I think it turns out better):

Code: Select all

#ifdef SMOOTH_REDUCTION
		double delta = approximateEval - beta;
		delta = max(delta, 1.0);
		double ddepth = double(depth);
		double r = 0.18 * ddepth + 3.1 + log(delta)/5.0;
		r = r > ddepth ? ddepth : r;
		int R = int(r);
#else
        // Null move dynamic reduction based on depth
        int R = (depth >= 5 * OnePly ? 4 : 3);

        // Null move dynamic reduction based on value
        if (approximateEval - beta > PawnValueMidgame)
            R++;
#endif
		nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID);
Second version:

Code: Select all

#ifdef SMOOTH_REDUCTION
		double delta = approximateEval - beta;
		delta = max(delta, 1.0);
		double ddepth = double(depth);
		double r = 0.18 * ddepth + 3.1 + log(delta)/5.0;
		r = r > ddepth ? ddepth : r;
		int R = int(r * (int)OnePly);
#else
        // Null move dynamic reduction based on depth
        int R = (depth >= 5 * OnePly ? 4 : 3);

        // Null move dynamic reduction based on value
        if (approximateEval - beta > PawnValueMidgame)
            R++;
		R *= OnePly;
#endif
		nullValue = -search(pos, ss, -(beta-1), depth-R, ply+1, false, threadID);

The difference is that R will always be truncated to integral plies in the first instance and it will be truncated into integral half plies in the second instance. This is because OnePly is actually defined as 2.

The net result is that the second version has stair-steps of 1/2 ply at a time and the first version has stair-steps of one ply at a time. There is more area under the 1/2 ply stair-steps and so more trimming occurs. I suspect that it is too much. It also may be a good idea to adjust the constants. I actually just eyeballed the equation constants from a curve I drew by hand an calculated by inverting a small matrix. I guess that great improvement can be had by adjusting the formula in a rational and scientific manner.
Milos
Posts: 4190
Joined: Wed Nov 25, 2009 1:47 am

Re: Little test with both stockfish 1.6s versions!

Post by Milos »

Dann Corbit wrote:I suspect that it is too much. It also may be a good idea to adjust the constants. I actually just eyeballed the equation constants from a curve I drew by hand an calculated by inverting a small matrix. I guess that great improvement can be had by adjusting the formula in a rational and scientific manner.
log(delta)/5 is too strong. My feeling is that something like sqrt(delta)/10 works better (with delta limited to 100 max).