Hello Martin:
Fortress detection is one of the Holy Grails of computer chess.
Chess Programming Wiki and searches at TalkChess might help to see what other people do. I already see that Gerd was faster than me!
KingsRow 1.19b also gives winning scores for red side with 8-man EGDB. You are right when you write that red 'have many options to move'. I computed perft values of the position with NebiyuCheckers up to depth 11, then Monte Carlo perft estimates from depth 11 to depth 20:
Code: Select all
7Q/4Q3/8/2Q1Q1Q1/1Q1p1Q1p/p1p1p3/3p3P/q7 w - 1 42
a b c d e f g h
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
8 * * * * . . . . . . . Q * * * * 8
7 * * * * . . . . Q . . . * * * * 7
6 * * * * . . . . . . . . * * * * 6
5 * * * * . . Q . Q . Q . * * * * 5
4 * * * * . Q . p . Q . p * * * * 4
3 * * * * p . p . p . . . * * * * 3
2 * * * * . . . p . . . P * * * * 2
1 * * * * q . . . . . . . * * * * 1
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
a b c d e f g h
----------------
perft 1
h2g3 1
h8g7 1
e7f8 1
e7d8 1
e7d6 1
e7f6 1
g5h6 1
g5f6 1
e5f6 1
e5d6 1
c5d6 1
c5b6 1
f4g3 1
b4a5 1
nodes 14
----------------
perft 2
h2g3 1
h8g7 7
e7f8 7
e7d8 7
e7d6 7
e7f6 7
g5h6 7
g5f6 7
e5f6 7
e5d6 7
c5d6 7
c5b6 7
f4g3 1
b4a5 7
nodes 86
----------------
perft 3
h2g3 14
h8g7 58
e7f8 43
e7d8 43
e7d6 37
e7f6 37
g5h6 51
g5f6 45
e5f6 59
e5d6 59
c5d6 58
c5b6 74
f4g3 16
b4a5 52
nodes 646
----------------
perft 4
h2g3 98
h8g7 319
e7f8 229
e7d8 229
e7d6 193
e7f6 193
g5h6 276
g5f6 240
e5f6 316
e5d6 316
c5d6 357
c5b6 465
f4g3 112
b4a5 294
nodes 3637
----------------
perft 5
h2g3 838
h8g7 2401
e7f8 1543
e7d8 1575
e7d6 1205
e7f6 1194
g5h6 1955
g5f6 1577
e5f6 2408
e5d6 2413
c5d6 2945
c5b6 4603
f4g3 1073
b4a5 2256
nodes 27986
----------------
perft 6
h2g3 5072
h8g7 13266
e7f8 8463
e7d8 8655
e7d6 6506
e7f6 6503
g5h6 10829
g5f6 8690
e5f6 13179
e5d6 13101
c5d6 18035
c5b6 28708
f4g3 6493
b4a5 12917
nodes 160417
----------------
perft 7
h2g3 43947
h8g7 112043
e7f8 67408
e7d8 70711
e7d6 49899
e7f6 48697
g5h6 88696
g5f6 67311
e5f6 116062
e5d6 117561
c5d6 163395
c5b6 292717
f4g3 62173
b4a5 115105
nodes 1415725
----------------
perft 8
h2g3 256534
h8g7 613014
e7f8 367121
e7d8 385681
e7d6 267340
e7f6 263551
g5h6 485262
g5f6 366757
e5f6 634069
e5d6 636079
c5d6 968892
c5b6 1754991
f4g3 355407
b4a5 641881
nodes 7996579
----------------
perft 9
h2g3 2297560
h8g7 5698762
e7f8 3263282
e7d8 3523699
e7d6 2343309
e7f6 2251043
g5h6 4423776
g5f6 3222820
e5f6 6208902
e5d6 6419609
c5d6 9391960
c5b6 18482872
f4g3 3542297
b4a5 6205229
nodes 77275120
----------------
perft 10
h2g3 13527649
h8g7 31231238
e7f8 17861934
e7d8 19292266
e7d6 12632850
e7f6 12266462
g5h6 24350347
g5f6 17694907
e5f6 33685014
e5d6 34429824
c5d6 55282869
c5b6 109525892
f4g3 20350685
b4a5 34803058
nodes 436934995
----------------
perft 11
h2g3 129045446
h8g7 311374433
e7f8 171775756
e7d8 191017270
e7d6 121118953
e7f6 114800590
g5h6 240489042
g5f6 170502051
e5f6 350321848
e5d6 370409101
c5d6 569148712
c5b6 1195360549
f4g3 214758930
b4a5 357351367
nodes 4507474048
Code: Select all
7Q/4Q3/8/2Q1Q1Q1/1Q1p1Q1p/p1p1p3/3p3P/q7 w - 1 42
a b c d e f g h
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
8 * * * * . . . . . . . Q * * * * 8
7 * * * * . . . . Q . . . * * * * 7
6 * * * * . . . . . . . . * * * * 6
5 * * * * . . Q . Q . Q . * * * * 5
4 * * * * . Q . p . Q . p * * * * 4
3 * * * * p . p . p . . . * * * * 3
2 * * * * . . . p . . . P * * * * 2
1 * * * * q . . . . . . . * * * * 1
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
a b c d e f g h
------------------------------------------------------------------
perftmc 11 (N = 51090 samples)
avg = 4.506710e+09 ; (sqrt{Σ[(sample_i - avg)²]})/N = 2.142231e+06
------------------------------------------------------------------
perftmc 12 (N = 45146 samples)
avg = 2.535752e+10 ; (sqrt{Σ[(sample_i - avg)²]})/N = 1.452082e+07
------------------------------------------------------------------
perftmc 13 (N = 40471 samples)
avg = 2.757799e+11 ; (sqrt{Σ[(sample_i - avg)²]})/N = 2.114642e+08
------------------------------------------------------------------
perftmc 14 (N = 36674 samples)
avg = 1.524398e+12 ; (sqrt{Σ[(sample_i - avg)²]})/N = 1.418613e+09
------------------------------------------------------------------
perftmc 15 (N = 33554 samples)
avg = 1.697516e+13 ; (sqrt{Σ[(sample_i - avg)²]})/N = 2.056086e+10
------------------------------------------------------------------
perftmc 16 (N = 30923 samples)
avg = 9.463964e+13 ; (sqrt{Σ[(sample_i - avg)²]})/N = 1.396105e+11
------------------------------------------------------------------
perftmc 17 (N = 28730 samples)
avg = 1.099909e+15 ; (sqrt{Σ[(sample_i - avg)²]})/N = 2.046285e+12
------------------------------------------------------------------
perftmc 18 (N = 26828 samples)
avg = 6.018354e+15 ; (sqrt{Σ[(sample_i - avg)²]})/N = 1.372541e+13
------------------------------------------------------------------
perftmc 19 (N = 25204 samples)
avg = 6.992525e+16 ; (sqrt{Σ[(sample_i - avg)²]})/N = 1.973487e+14
------------------------------------------------------------------
perftmc 20 (N = 23764 samples)
avg = 3.950268e+17 ; (sqrt{Σ[(sample_i - avg)²]})/N = 1.383354e+15
NebiyuCheckers uses a chess-like notation where a1 means square 4 and the start of the Old Faithful opening would be c3d4 d6c5 b2c3 f6g5 a1b2.
Good luck!
------------------------
hgm wrote: ↑Wed Jul 21, 2021 5:36 pm[...] I don't know enough about Checkers to even see why the presented position is a fortress. [...]
That checkers position is a fortress because 7-10-11-15 white diamond can not be broken if white wants, plus the white checker at 12 is not forced to advance. The white checker at 13 can be forced to move (5-9 or 14-9 by red, then 13x6), but the white star move with this white checker at 6 is crowning it in square 1 and not in square 2: if white plays 6-2?, then red can force exchanges at square 6, breaking the white diamond with 10x1 at some point and red takes 19x10 (if white king is at square 3) or 19x10x3 (if white king is at square 4), looking really bad for white. For example: 5-9, 13x6; 14-9, 6-2?; 17-13 (preparing 9-6 in the next move).
Just crowning in square 1 allows white to play the white king at 4 to 8 and then to 4 or to 3
ad infinitum: 4-8-x-8-x-8-x-... (x = 3 or 4), not allowing exchanges at square 6, thus keeping closed the position. Please correct me if I am wrong, Martin.
Regards from Spain.
Ajedrecista.